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NOTION OF FLUIDS WITH VERY LITTLE VISCOSITY.*

By L. Prandtl.;

In classic hydr0d_-namios the motion of nonviscous fluids is

chiefly alocussed For the motion of viscous fluids, we have

the differential equation whose evaluation has been well confirmed

by physical observations. As for solutions of this differential

equation , we have, aside from unid_nensional problems like those

given by Lord Rs,yleigh (Proceedings of the London Iilathematical

Society, II pase 57 = Papers I page 474 ff.), only the ones in

which the inertia of the fluid is disregarded or plays no impor-

tant role The olai.._enslonal and tridimensional problems, ta_ing

viscosity and inertia into account, still await solution. This

is probably due to the troublesome properties of the differential

equation. In the "Vector S}T._bolics" of Gibbs, _* this reads

/

O, the density; V, a function

k, viscosity constant. There is

in which v is the velocity;

of the power; p, pressure;

also the continuity equation

div v = 0.

* "Ucber Flussi_: keitsb'=_''_-_'_-'__._-o_-_ bei sehr kleiner Reibung." From

"V ier Abi_ndlun_cn zur Hydrodynamik und Aerod_-nami_, " pp. 1-,,%,
G_ttingen, 1927.

** a o b scalar product, a × b _vect°r wroduct, A Hamilton dif-

ferentiator (A : i _ + j 8_y + _ m!_h.• 8z/
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for incompressible fluids, which alone will be here considered.

From the differential equation, it is easy to infer that, for

sufficiently slow and also slowly changing motions, the factor p,

in contrast with the other terms, can be as _uall as desired, so

that the effect of the inertia can here be disregarded with suffi-

cient approximation. Conversely, with sufficiently rapid motion,

the quadratic term v @ A v (change of velocity due to ci_nge of

location) is large enough to let the viscosity effect appear quite

subordinate. The latter almost always happens in cases of fluid

motion occurring in technology. It is therefore logical simply to

use here the equation for non-visco_us fluids. It is known, how-

ever, that the solutions of this equation generally agree very

poorly with experience. I will recall only the Direchlet sphere,

which, according to the theory, should move without friction.

I have now set myself the task to investigate systematically

the laws of motion of a fluid _fnose viscosity is ass1_ed to be

very small. The viscosity is supposed to be so small that it can

be disregarded wherever there are no great velocity differences

nor accumulative effects. This plan has proved to be very fruit-

ful, in tD_t, on the one l-_nd, it produces mathematical formulas,

which enable a solution of the probl_:_s and, on the other hand,

the agreement with observations promises to be very satisfactory.

To mention one instance now: when, for example, in the steady mo-

tion around a sphere, there is a transition from the motion with

viscosity to the limit of nonviscosity, then something quite dif-
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ferent from the Dirichlet motion is produced. The latter is then

only an initial condition, which is soon disturbed by the effect

of an ever-so-small viscosity.

I will now take up the individual problems.

unit area, due to the viscosity, is

v (2)

The force on the

If the vortex is represented by x = ½ rot v, then K = -2 k rot w s

according to a well-known vector analytical transformation, taking

into consideration that div v = O. From this it follows directly

that, for w = O, also K = O, that is, that however great the

viscosity, a vortexless flow is possible. If, however, this is

not obtained in certain cases, it is due to the fact that turbu-

lent fluid from the boundary is injected into the vortexless flow.

With a periodic or cyclic motion, the effect of viscosity,

even when it is very small, can accumulate with time. For perma-

nence, therefore, the work of K, that is, the llne integral

/ K o d s along every streamline with cyclic motions, must be

zero for a full cycle.

P

/ K o d s = (V2 + p_) - (% + p_).

A general formula for the distribution of the vortex can be

derived from this with the aid of the Helmholtz vortex laws for

bidimensional motions which have a flow function _/ (Cf. "Ency-

klopadie der mathematischen Wissenschaften," Vol. IV, 14, 7).
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With steady flow we obtain _

P
2 k/ vo d s

With closed streamlines this becomes zero. Henc_ we obtain the

simple result that, within a region of closed streamlines, the

vortex assumes a constant value. For axially symmetrical motions

with the flow in meridian planes, the vortex for closed _stream-

lines is proportior_l to the radius w = cr. This gives a force

K = 4 kc in the direction of the axis.

The most important aspect of the problem is the behavior of

the fluid on the surface of the solid body. Sufficient account

can be taken of the physical phenanena in the boundary layer be-

tween the fluid and the solid body by ass_ing that the fluid ad-

heres to the surface _d that, therefore, the velocity is either

zero or equal to the velocity of the body. If, however, the

viscosity is very slight and the path of the flow along the sur-

i

face is not too long, then the velocity will D_ve its normal value

in immediate proximity to the surface. In the thin transition

layer, the great velocity differences will then produce noticea-

ble effects in spite of the small viscosity constants.

This problem can be handled best by systematic omissions in

the general differential equation. If k is taken as small in

*According to Helmholtz, the vortex of a particle is per_qanently

proportional to its _'len<_n in the direction of the vortex e_is

Hence we have, with steady even flow on each streamline

(_ = const.), w constant, consequently w = f_ • Herewith

/ K o d s = 8k/ rot w o d s = 2k f'(_)/ rot ? o ds =

= 2k f'(_)/v o d s.
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the second ordcr, then the thickness of the transition layer will

be small in the first order, like the normal components of the

velocity. The lateral pressure differenc_can be disregarded, as

likewise any curvature of the streamlines. The pressure distri-

bution will be impressed on the transition layer by the free fluid.

For the problem which has thus far been discussed, we obtain

in the steady condition (X-direction tangential, Y-direction nor-

mal, w and v the corresponding velocity components) the differ-

ential equation

_u _u_ _ k _up u_-_+ V_yj + _x = _y_

and

_._. + n-v = O.
3x ay

If, as usual, dp/dx is given throughout, as also the course of

u for the initial cros._ section, then every numerical problem of

this kind can be nu_merically solved, by obtaining the correspond-

ing 3u/_x by squaring every u. Thus we can alwayg make prog-

ress in the X-direction with the aid of one of the well-known

approximation methods (Cf. Kutta, "Zeitschrift fur _lath. und

Physik," Vol. 46, p.435). One difficulty, however, consists in

the various sin_alarities developed on the solid surface. The

simolest case of the conditions h_rc considered is when the water

flows alon_ a flat thin pl_e. Here a reduction of the variables

is possible and we can write u = f#--Y--h.__ By the numerical so-

Jx/

lution of the resulting differential equation, we obtain for the
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drag the formula

(b width,

R = I.I ... b_/k p _ Uo 3

length of plate, u o velocity of undisturbed water

opposite plate). Figure 1 shows the course of u.

The most important practical result of these investigations

is that, in certain cases, the flow separates from the surface

at a point entirely determined by external conditions (Fig. 2).

A fluid layer, which is set in rotation by the friction on the

wall, is thus forced into the free fluid and, in accomplishing a

complete transformation of the flow, plays the same role as the

Helmholz separation layers. A chan_<e in the viscosity constants

k simply changes the thickness of the turbulent layer (propor-

tional to the quantity --d k--]_Du]' everything else remaining un-

changed. It is therefore possible to pass to the limit k = 0

and still retain the same flow figure.

As shown by closer consideration, the necessary condition

for the separation of the flow is that there should be a pressure

increase along the surface fin the direction of the flow. The

necessary ma_o_nitude of this pressure increase in definite cases

can be determined only by the numerical evaluation of the problem

which is yet to be undertaken. As a plausible reason for the

separation of the flow, it may be stated that, with a pressure

increase, the free fluid, its kinetic energy is partially convert-

ed into potential energy/. The transition layers, however, have

lost a large part of their kinetic oner_ and no longer possess

....... _ _
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enough energy to penetrate the region of higher pressure. They are

therefore deflected laterally.

Actording to the preceding, the treatment of a given flow

process is resolved into two components mutually related to one

another. On the one hand, we have the free fluid, which can be

treated as nonviscous according to the Helmholtz vortex laws,

while, on the other hand, we have the transition layers on the

solid boundaries, whose motion is determined by the frec fluid,

but which, in their turn, impart their characteristic impress to

the free flow by the emission of turbulent layers.

I have attempted, in a few cases, to illustrate the process

more clearly by diagrams of the streamlines, though no claim is

made to quantitative accuracy. In so far as the flow is vortex-

free, one can, in drawing, take advantage of the circumstance,

that the streamlines form a quadratic system of curves with the

lines of constant potential.

Figures 3-4 show, in two stages, the beginning of the flow

around a wall projecting into the current. The vortex-free ini-

tial flow is rapidly transformed by a spiral separating layer.

The vortex continually advances, leaving still water behind the

finally stationary separating layer.

Figures 5-6 illustrate the analogous process with a cylinder.

The fluid layers set in rotation by the friction are plainly in-

dicated. Here also the separating layers extend into infinity.

All these separating layers are labile. If a slight sinoidal
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disturbance is present, motions develop as shown in Figures 7-8.

It is clearly seen how separate vortices are developed by the mu-

tual interference of the flows. The vortex layer is rolled up in-

side these vortices, as shown in Figure 9. The lines of this

figure are not streamlines, but such as were obtained by using a

colored liquid.

I will now briefly describe experiments which I undertook

for comparison with the theory. The experizental apparatus (Fig.

lO) consists of a tank 1.5 m (nearly 5 feet) long with an inter-

mediate bottom. The water is set in motion by a Paddle wheel

and, after passing through the deflecting apparatus a and four

sieves b, enters the upper channel comparatively free from vor-

tices, the object to be tested being introduced at c. Fine

scales of micaceous iron ore are suspended in the water. These

scales indicate the nature of the flow, especially as reKards the

vortices, by the peculiarities of their reflection due to their

o r ientat ion.

The accompanyin_ photographs were obtained in this manner,

the flow being from left to right. Nos. 1-4 show the flow past

a wall projecting into the current. The separating or boundary

layer, which passes off from the edge, is apparent. In No. 1 it

is very s:_211; in No, 2, concealed by strong disturbances; in No.

3, the vortex spreads over the whole picture; in No. 4, the per-

manent condition is shown. A disturbance is also evident above

the wall. Since a higher pressure prevails in the corner, due

J

=
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to the obstraetion of the water flow, even here the flow sepa-

rates from the wall after awhile (Cf. Figs. 1-4). The various

striae visible in the vortex-free portion of the flow (especlally

in Nos. 1-2) are due to the fact that, at the inception of the

flow, the liquid was not entirely quiet. _os. 5-6 show the flow

around a curved obstacle or, from another v.!e_@oint, through a

continuously narrowing and then widenin_ channel. No. 5 _s taken

shortly after the inception of the flow. One boundary layer _has

developed into a spiral, while the other has elongated and broken

up into very regular vortices. On the convex side, near the

right end, the bedizening of the separation can be secn. No. 6

shows the permanent condition in which the flo_v be Tins to sepa-

rate about at the narrowest cross section.

Nos. 7-10 show the flow around a cylindrical obstacle. L_o.

7 shows the beginning of the separation; Nos. 8-9, subsequent

stages. Between the two vortices there is a line of .water which

belonged to the transition layer before the beginning of the sep-

aration. I_o. lO,shows the pezr_anent condition. The vrake of tur-

bulent ,zJater behind the cylinder swings back and forth, whence

the momentary unsz_metrical appearance. The cylinder _has a slot

along one of its _eneratrices. If this is placed as sho,_n in

Nos. ll-12 and water is drav_n out through a tube, the transition

layer on one side can be intercepted. %q_en this is missing, its

effect, the separation, is eliminated. In No. ll, which corres_

in point of time, to _o. 9, there is seen only one vortex and the
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line. In No. I_ (permanent condition), the flow closely follows

the surface of the cylinder till it reaches the slot, although

only a very little water enters the cylinder. A turbulent layer

has developed instead on the flat wall of the tank (its first in-

dication having appeared in No. ll). Since the velocity must di-

minish in the widening cross section and the pressure consequent-

ly increase (½ p v _ + V + p = constant on every streamline), we

have the conditions for the separation of the flow from the wall,

so that even this striking phenomenon is explained by the theory

presented.

Translation by Dwight _. _[iner,
National Advisory Committee
for Aeronautics.
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